Abstract

In this paper, a complete nonlinear dynamic unmanned helicopter model considering wind disturbance is proposed to achieve realistic simulations and teasing out the effect of wind on the control system. The wind velocity vector which is horizontal as seen in the inertial frame can be obtained by subtracting the airspeed measured by atmospheric data computer from the inertial speed measured by GPS. The design of the controller fully considers the existence of wind, and the wind disturbance is suppressed by the method of hierarchical control combined with the integral sliding mode control (SMC). The stability proof is given. Hardware in the loop (HIL) tool is employed as a practical engineering solution, and it is an essential step in validating the new algorithm before moving to real flight experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.