Abstract
Recent years have witnessed rapid adoption of low-power Wireless Sensor-Actuator Networks (WSANs) in process industries. To meet the critical demand for reliable and real-time communication in harsh industrial environments, the industrial WSAN standards make a set of specific design choices, such as employing the Time-Slotted Channel Hopping (TSCH) technique. Such design choices distinguish industrial WSANs from traditional Wireless Sensor Networks, which were designed for best-effort services. Recently, there has been increasing interest in developing new methods to enable autonomous transmission scheduling for industrial WSANs that run TSCH and the Routing Protocol for Low-Power and Lossy Networks (RPL). Our study shows that the current approaches fail to consider the traffic loads of different devices when assigning time slots and channels, which significantly compromises network performance when facing high data rates. In this article, we introduce a novel Autonomous Traffic-Aware transmission scheduling method for industrial WSANs. The device that runs ATRIA can detect its traffic load based on its local routing information and then schedule its transmissions accordingly without the need to exchange information with neighboring devices. Experimental results show that ATRIA provides significantly higher end-to-end network reliability and lower end-to-end latency without introducing additional overhead compared with a state-of-the-art baseline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.