Abstract

Multivalent binding of glycans on pathogens and on mammalian cells by the receptors DC-SIGN (CD209) and DC-SIGNR (L-SIGN, CD299) is dependent on correct disposition of the C-type carbohydrate-recognition domains projected at the C-terminal ends of necks at the cell surface. In the work reported here, neck domains of DC-SIGN and DC-SIGNR expressed in isolation are shown to form tetramers in the absence of the CRDs. Stability analysis indicates that interactions between the neck domains account fully for the stability of the tetrameric extracellular portions of the receptors. The neck domains are approximately 40% α-helical based on circular dichroism analysis. However, in contrast to other glycan-binding receptors in which fully helical neck regions are intimately associated with C-terminal C-type CRDs, the neck domains in DC-SIGN and DC-SIGNR act as autonomous tetramerization domains and the neck domains and CRDs are organized independently. Neck domains from polymorphic forms of DC-SIGNR that lack some of the repeat sequences show modestly reduced stability, but differences near the C-terminal end of the neck domains lead to significantly enhanced stability of DC-SIGNR tetramers compared to DC-SIGN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.