Abstract

We discuss techniques to predict the dynamic vehicle response to various natural obstacles. This method can then be used to adjust the vehicle dynamics to optimize performance (e.g. speed) while ensuring that the vehicle is not damaged. This capability opens up a new area of obstacle negotiation for UGVs, where the vehicle moves over certain obstacles, rather than avoiding them, thereby resulting in more effective achievement of objectives. Robust obstacle negotiation and vehicle dynamics prediction requires several key technologies that are discussed in this paper. We detect and segment (label) obstacles using a novel 3D obstacle algorithm. The material of each labelled obstacle (rock, vegetation, etc) is then determined using a texture or color classification scheme. Terrain load-bearing surface models are then constructed using vertical springs to model the compressibility and traversability of each obstacle in front of the vehicle. The terrain model is then combined with the vehicle suspension model to yield an estimate of the maximum safe velocity, and predict the vehicle dynamics as the vehicle follows a path. This end-to-end obstacle negotiation system is envisioned to be useful in optimized path planning and vehicle navigation in terrain conditions cluttered with vegetation, bushes, rocks, etc. Results on natural terrain with various natural materials are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.