Abstract
We consider the problem of land vehicles under attack from a number of unmanned aerial systems. As the number of unmanned aerial systems increase, it may become difficult for human operators to coordinate actions across vehicles in a timely manner. In this paper, we study a number of algorithms designed to recommend actions to operators that will maximise the survivability of the vehicle fleet. We present a comparison of several assignment approaches including evolutionary strategies, genetic algorithms, multi-armed bandits, probability trees and basic heuristics. The performance of these algorithms is analysed across six different simulated scenarios. Our findings indicate that while there was no single best approach, Evolution Strategies, Ensemble and Genetic Algorithms were the strongest performers. It was also seen that a number of heuristic algorithms and the multi-armed bandits approach offered reliable performance in a number of scenarios without the need for any training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.