Abstract

Recent analyses have shown that the grid-integration of offshore wind farms through MTDC systems has brought low inertia and small-signal stability issues, in which the dynamics of phase-locked-loop (PLL) play a crucial role. To address this issue, this article proposes a control strategy for the multi-terminal VSCs aiming at PLL-less synchronization and autonomous frequency response of the MTDC system. One of the significant features of the proposed control is that the deviation of the grid frequency can be instantaneously reflected on the deviation of the DC voltage without ancillary control. Based on this feature, a fast inertia response and primary frequency regulation among wind farms and AC systems interconnected by the MTDC system can be achieved. A small-signal model is established to evaluate the overall system stability using the proposed control. Finally, comparative studies of this proposed control with the conventional PLL-based vector control are conducted in PSCAD/EMTDC based on a practical MTDC system in China, the Zhangbei four-terminal HVDC transmission system. The analysis shows that the proposed control exhibits advantages in weak grid operation and autonomous frequency response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.