Abstract

Energy saving in small-scale thermal power engineering is aimed at increasing the efficiency of using fossil energy carriers, electricity and, possibly, their wider replacement with alternative sources in the housing and communal complex. The practical use of solar installations, both photovoltaic and directly water heating, has found widespread use, at the same time, the peculiarities of the introduction of these installations are due to the climatic and technical conditions of their use. For countries located in climatic zones with relatively cold climates, the development of water heating installations is most rational when they are used seasonally. The relatively low potential of the coolant, the frequency of heat supply in these installations, associated with the seasonality of their operation, time of day and weather, necessitate a number of technical solutions using additional equipment in the form of thermal energy accumulators, heat pumps and other equipment, which in any case must be combined with a traditional source of thermal energy operating on fossil fuels or electricity, performing the functions of both an additional and emergency source of thermal energy. Reserving the capacity of alternative energy sources is most efficient and least energy-consuming to carry out with heat sources using gaseous or degasified fuel. The use of electricity for the purposes of heat supply, with small capital investments, requires significant installed capacities of the heat source with a low coefficient of efficiency for primary fuel. In order to achieve the highest efficiency of energy use, thermal schemes of autonomous heat supply installations for objects using modern condensing boilers of low power and, together with them, various heat storage devices, providing year-round operation of equipment at heat supply facilities, are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.