Abstract

In this work we show the design and implementation of an autonomous sample switcher device to be used as a part of the experimental set up in transmission Mossbauer spectroscopy, which can be extended to other spectroscopic techniques employing radioactive sources. The changer is intended to minimize radiation exposure times to the users or technical staff and to optimize the use of radioactive sources without compromising the resolution of measurements or spectra. This proposal is motivated firstly by the potential hazards arising from the use of radioactive sources and secondly by the expensive costs involved, and in other cases the short life times, where a suitable and optimum use of the sources is crucial. The switcher system includes a PIC microcontroller for simple tasks involving sample displacement and positioning, in addition to a virtual instrument developed by using LabView. The shuffle of the samples proceeds in a sequential way based on the number of counts and the signal to noise ratio as selection criteria whereas the virtual instrument allows performing} a remote monitoring from a PC via Internet about the status of the spectra and to take control decisions. As an example, we show a case study involving a series of akaganeite samples. An efficiency and economical analysis is finally presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call