Abstract

Abstract. A research on robot planning path has been widely conducted and developed. Generally, the desired path is the safe one which has no obstacles and it can be conducted in a quick process. There are several methods that can be applied in planning the path including particle swarm optimization method and genetic algorithm. Both methods are compared in this research in order to discover the best method. Particle swarm optimization method utilizes the particle population movement and genetic algorithm method explores a population consisting individuals’ solutions. The finding reveals that particle swarm optimization method is better than generic algorithm method. This is due to computation time and path required by particle swarm optimization method are shorter than genetic method algorithm. Keyword: Robot path planning, particle swarm optimization, genetic algorithm.Abstrak. Penelitian mengenai perencanaan jalur untuk robot mobil telah banyak diteliti dan dikembangkan. Pada umumnya perencanaan jalur yang diinginkan adalah jalur yang yang aman, tanpa rintangan, dan jarak tempuh yang singkat. Terdapat beberapa metode yang dapat diterapkan dalam perencanaan jalur ini diantaranya adalah metode particle swarm optimization dan genetic algorithm. Pada penelitian ini, kedua metode optimasi tersebut diterapkan. Kedua metode optimasi tersebut dibandingkan untuk didapatkan metode dengan hasil yang terbaik. Metode particle swarm optimization memanfaatkan pergerakan populasi partikel dan metode genetic algorithm melakukan pencarian pada sebuah populasi dari sejumlah individu-individu yang merupakan solusi permasalahan. Hasil penelitian yang dilakukan dengan membandingkan kedua metode optimasi ini adalah metode particle swarm optimization lebih baik daripada metode genetic algorithm. Hal ini berdasarkan pada waktu komputasi dan jalur tempuh yang dibutuhkan oleh metode particle swarm optimization lebih pendek dibandingkan metode genetic algorithm. Kata Kunci: perencanaan jalur robot, particle swarm optimization, genetic algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.