Abstract

AbstractWe propose a hierarchical cognitive navigation model (HCNM) to improve the self-learning and self-adaptive ability of mobile robots in unknown and complex environments. The HCNM model adopts the divide and conquers approach by dividing the path planning task into different levels of sub-tasks in complex environments and solves each sub-task in a smaller state subspace to decrease the state space dimensions. The HCNM model imitates animal asymptotic properties through the study of thermodynamic processes and designs a cognitive learning algorithm to achieve online optimum search strategies. We prove that the learning algorithm designed ensures that the cognitive model can converge to the optimal behavior path with probability one. Robot navigation is studied on the basis of the cognitive process. The experimental results show that the HCNM model has strong adaptability in unknown and environment, and the navigation path is clearer and the convergence time is better. Among them, the convergence time of HCNM model is 25 s, which is 86.5% lower than that of HRLM model. The HCNM model studied in this paper adopts a hierarchical structure, which reduces the learning difficulty and accelerates the learning speed in the unknown environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.