Abstract

Orbit determination of spacecraft in orbit has been mostly dependent on either GNSS satellite signals or ground station telemetry. Both methods present their limitations, however: GNSS signals can only be used effectively in earth orbit, and ground-based orbit determination presents an inherent latency that increases with the Earth–spacecraft distance. For spacecraft flying formations, an alternative method of orbit determination, independent of external signals, consists in the observation of the spacecraft’s position with respect to the central body through the relative positioning history of the spacecraft within the formation. In this paper, the potential of the relative positioning method is demonstrated in the context of the SunRISE mission, and compared with the mission’s previously proposed orbit determination methods. An optimization study is then made to find the optimal placement of a new spacecraft in the formation so as to maximize the positioning accuracy of the system. Finally, the possibility of removing part of the system’s relative bearing measurements while maintaining its observability is also studied. The resulting system is found to be observable, but ill-conditioned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.