Abstract
The numerical predictor-corrector guidance method with a linear bank angle parameterization has been widely applied to various atmospheric entry guidance problems. However, it has been found that the linear bank angle approach has limitations in satisfying the final state requirement of a specific type of atmospheric entry mission. In response, this paper proposes a novel bank angle parameterization based on a logistic function, which improves the energy preservation capability and increases the potential final altitude at the end of the entry phase. The paper also suggests a guideline to determine a guidance law activation point for better entry performance. Numerical simulations demonstrate that the proposed guidance scheme outperforms the linear bank profile approach and is suitable for future human Mars landing missions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.