Abstract

Monitoring surgical instruments is an essential task in computer-assisted interventions and surgical robotics. It is also important for navigation, data analysis, skill assessment and surgical workflow analysis in conventional surgery. However, there are no standard datasets and benchmarks for tool identification in neurosurgery. To this end, we are releasing a novel neurosurgical instrument segmentation dataset called NeuroID for advancing research in the field. Delineating surgical tools from the background requires accurate pixel-wise instrument segmentation. In this paper, we present a comparison between three encoder-decoder approaches to binary segmentation of neurosurgical instruments, where we classify each pixel in the image to be either tool or background. A baseline performance was obtained by using heuristics to combine extracted features. We also extend the analysis to a publicly available robotic instrument segmentation dataset and include its results. The source code for our methods and the neurosurgical instrument dataset will be made publicly available (http://brl.ee.washington.edu/robotics/surgical-robotics/neurosurgical-instrument-segmentation) to facilitate reproducibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.