Abstract

An autonomous navigation system for near-Earth spacecraft is described; this system allows determination of the satellite orbit and prediction of its motion parameters. Radio navigation measurements of GLONASS and GPS satellite systems are used for this purpose. The autonomous navigation system is designated for operation on near-Earth orbits which do not go beyond the navigation areas of GLONASS and/or GPS and on orbits with large eccentricity whose apocenter is at a distance of 50–70 thousand km from the Earth’s surface. The developed methods and algorithms for orbit determination are based on the application of laws of motion dynamics of a spacecraft directly at processing primary phase measurements of the carrier frequency and code pseudo-range using an extended measurement base. Algorithms for determination of motion parameters of the spacecraft and results of simulation and operation of a model system are presented. The possibility of creation of an onboard autonomous navigation system with precision and reliability higher than those of the ground measuring complex is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.