Abstract

This paper deals with the autonomous navigation scheme for a mobile robot in indoor environment using an upward-looking camera and sonar sensors. Corner and lamp features are extracted from the sequential ceiling images, and these features are used as landmarks in the SLAM (simultaneous localization and mapping) process. Combining lamp information with the conventional corner feature-based approach provides accurate pose estimation, since lamp features are robustly detected and associated in most indoor environments. The extracted features are used in the EKF (extended Kalman filter) to estimate both robot pose and feature positions. Based on the pose estimation from the SLAM process, autonomous exploration is achieved by applying driving gains to exploration nodes. The sonar sensors are adopted to detect most obstacles including glasses and black surfaces. The proposed scheme is a low-cost solution to autonomous mobile robot navigation since it can be implemented with a web camera and a small number of sonar sensors. Experimental results show that the proposed scheme works successfully in real environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.