Abstract

We report a carbonaceous nanomotor with a characteristic flask-like hollow structure that can autonomously move under the propulsion of oxygen bubbles. The carbonaceous nanoflask (CNF) motor was fabricated by encapsulating platinum nanoparticles (Pt NPs) into the hollow cavity of the CNF. The internally encapsulated Pt NPs act as catalysts to decompose hydrogen peroxide (H2O2) fuel into oxygen bubbles. The generated oxygen bubbles recoil the motion of the CNF motors. Besides, the velocity of CNF motors can be controlled by adjusting the concentration of the H2O2 solution. The motion velocity increases with the increase of H2O2 concentration, up to 109.25 μm s-1 at 10% H2O2. This study provides important implications for understanding the motion behaviors of nanomotors with an internal cavity, and the self-propelled CNF motors as smart carrier systems have potential applications in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.