Abstract
Liquid crystals (LCs) are ubiquitous in display technologies. The orientational ordering in the nematic phase of LCs gives rise to structural anisotropy, the ability to form topological defects and extraordinary sensitivity to interfacial events — three features that are not found in traditional, isotropic liquids. Active LC systems represent a particular class of active materials, in which some form of energy is transformed and used to generate motion, providing opportunities for new technologies and offering a platform to investigate matter far from equilibrium. In this Review, we discuss recent advances in the field of active LC systems, including natural systems, such as cell colonies, biopolymers and bacteria, and synthetic systems, which mimic the adaptive and autonomous behaviours found in nature. We investigate the properties of defects and flows, examine LC interfaces and emulsions, and discuss active LC colloids and composites. Finally, we highlight future possibilities and applications of active LC systems. Active liquid crystals are a particular type of active materials in which an inherent structural anisotropy leads to long-range order and topological defects. This Review discusses natural and synthetic active liquid crystals, and explores their autonomous behaviour as well as potential applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.