Abstract

Aeronautics research has continually sought to achieve the adaptability and morphing performance of avian wings, but in practice, wings of all scales continue to use the same hinged control-surface embodiment. Recent research into compliant and bio-inspired mechanisms for morphing wings and control surfaces has indicated promising results, though often these are mechanically complex, or limited in the number of degrees-of-freedom (DOF) they can control. Seeking to improve on these limitations, we apply a new paradigm denoted Autonomous Material Composites to the design of avian-scale morphing wings. With this methodology, we reduce the need for complex actuation and mechanisms, and allow for three-dimensional placement of stretchable fiber optic strain gauges (Optical Lace) throughout the metamaterial structure. This structure centers around elastomeric conformal lattices, and by applying functionally-graded warping and thickening to this lattice, we allow for local tailoring of the compliance properties to fit the desired morphing. As a result, the wing achieves high-deformation morphing in three DOF: twist, camber, and extension/compression, with these morphed shapes effectively modifying the aerodynamic performance of the wing, as demonstrated in low-Reynolds wind tunnel testing. Our sensors also successfully demonstrate differentiable trends across all degrees of morphing, enabling the future state estimation and control of this wing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.