Abstract

As one of the three pillars in computational intelligence, fuzzy systems are a powerful mathematical tool widely used for modelling nonlinear problems with uncertainties. Fuzzy systems take the form of linguistic IF-THEN fuzzy rules that are easy to understand for human. In this sense, fuzzy inference mechanisms have been developed to mimic human reasoning and decision-making. From a data analytic perspective, fuzzy systems provide an effective solution to build precise predictive models from imprecise data with great transparency and interpretability, thus facilitating a wide range of real-world applications. This paper presents a systematic review of modern methods for autonomously learning fuzzy systems from data, with an emphasis on the structure and parameter learning schemes of mainstream evolving, evolutionary, reinforcement learning-based fuzzy systems. The main purpose of this paper is to introduce the underlying concepts, underpinning methodologies, as well as outstanding performances of the state-of-the-art methods. It serves as a one-stop guide for readers learning the representative methodologies and foundations of fuzzy systems or who desire to apply fuzzy-based autonomous learning in other scientific disciplines and applied fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.