Abstract

Landing on unmanned surface vehicles (USV) autonomously is a critical task for unmanned aerial vehicles (UAV) due to complex environments. To solve this problem, an autonomous landing method is proposed based on a multi-level marker and linear active disturbance rejection control (LADRC) in this study. A specially designed landing board is placed on the USV, and ArUco codes with different scales are employed. Then, the landing marker is captured and processed by a camera mounted below the UAV body. Using the efficient perspective-n-point method, the position and attitude of the UAV are estimated and further fused by the Kalman filter, which improves the estimation accuracy and stability. On this basis, LADRC is used for UAV landing control, in which an extended state observer with adjustable bandwidth is employed to evaluate disturbance and proportional-derivative control is adopted to eliminate control error. The results of simulations and experiments demonstrate the feasibility and effectiveness of the proposed method, which provides an effective solution for the autonomous recovery of unmanned systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call