Abstract

In this article, autonomous flight performance of an unmanned aerial robot is advanced by benefiting aerodynamic nose and tail cone shapes redesign both experimentally and computationally. For this intention, aerodynamic performance criteria (i.e. maximum fineness) of a scaled model of our autonomous aerial robot called as Zanka-II produced in Erciyes University Faculty of Aeronautics and Astronautics Model Aircraft Laboratory is first observed in sub-sonic Wind Tunnel. Results obtained in this wind tunnel are validated using a computational fluid dynamics (CFD) software (i.e. Ansys). Therefore, nose and tail cone of fuselage are improved in order to maximize maximum fineness of the autonomous aerial robot. A novel scaled model using optimum data is then produced and placed in Wind Tunnel in order to validate Ansys results with experimental results. By using geometrical data of ultimate aerodynamically optimized aerial robot, better autonomous flight performance is achieved in both simulation environment (i.e. Matlab and Simulink) and real time flights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.