Abstract

We developed a small autonomous hobby-class unmanned helicopter that weighs about 9 kg, focusing on attitude and velocity models and controller design. Simge Input Single Output (SISO) transfer function models are derived from brief kinematical analysis and system identification for each of the helicopter dynamics of pitch, roll, yaw, and three direction velocities. We designed six separate controllers based on derived models using LQG and LQI control theory. The models and control structure are verified by experimental results. Accurate position control, namely, hover control and trajectory-following control, is achieved by a simple control algorithm using a designed attitude and velocity control structure. Robustness of the controller against wind was confirmed in a windy-day experiment. To verify robustness against the perturbation of physical helicopter parameters, the controller is applied to a larger helicopter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.