Abstract

As the electric drive finds its way progressively into important industry sectors like mobility, transportation, agriculture, production, and supporting services, it becomes increasingly important to have individually optimized technical solutions for the manifold applications. Therefore, a high number of engineers with interdisciplinary competencies will be needed soon to comply with the demand of the worldwide markets. A key component for an often-used variant of the electric drivetrain is the full-bridge inverter, which is subject to a wide spectrum of different requirements. In 2021, the University of Denver (DU), started a cooperation with the University of Applied Sciences Augsburg (UASA) to develop a full-bridge inverter for an autonomous, electrical Formula Student race car, using four permanent magnet synchronous machines as an all-wheel drive. To improve the performance of the race car, the inverter must be lightweight, package optimized, electromagnetic compatibility compliant, safe, and reliable when it distributes a maximum of 80 kW instantaneous power from the battery at a voltage between 420 V and 600 V individually to the four wheels. This article documents the inverter development process using silicon carbide MOSFET power modules, with the goal of using future results in the race car and the knowledge transfer for the education of engineering students. This transatlantic partnership between DU and UASA also serves as a success story for intercontinental collaborative development based on modern communication and decentralized development techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call