Abstract

In the era of electrification and artificial intelligence, direct current motors are widely utilized with numerous innovative adaptive and learning methods. Traditional methods utilize model-based algebraic techniques with system identification, such as recursive least squares, extended least squares, and autoregressive moving averages. The new method known as deterministic artificial intelligence employs physical-based process dynamics to achieve target trajectory tracking. There are two common autonomous trajectory-generation algorithms: sinusoidal function- and Pontryagin-based generation algorithms. The Pontryagin-based optimal trajectory with deterministic artificial intelligence for DC motors is proposed and its performance compared for the first time in this paper. This paper aims to simulate model following and deterministic artificial intelligence methods using the sinusoidal and Pontryagin methods and to compare the differences in their performance when following the challenging step function slew maneuver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.