Abstract

Self-deployment of sensors with maximized coverage in Underwater Acoustic Sensor Networks (UWASNs) is challenging due to difficulty of access to 3-D underwater environments. The problem is further compounded if the connectivity of the final network is required. One possible approach is to drop the sensors on the surface and then move them to certain depths in the water to maximize the 3-D coverage while maintaining the connectivity. In this paper, we propose a purely distributed node deployment scheme for UWASNs which only requires random dropping of sensors on the water surface. The goal is to expand the initial network to 3-D with maximized coverage and guaranteed connectivity with a surface station. The idea is based on determining the connected dominating set of the initial network and then adjust the depths of all dominatee and dominator neighbors of a particular dominator node for minimizing the coverage overlaps among them while still keeping the connectivity with the dominator. The process starts with a leader node and spans all the dominators in the network for repositioning. Simulations results indicate that connectivity can be guaranteed regardless of the transmission and sensing range ratio with a coverage very close to a coverage-aware deployment approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call