Abstract

Traditionally, fuzzy neural networks have parametric clustering methods based on equally spaced membership functions to fuzzify inputs of the model. In this sense, it produces an excessive number calculations for the parameters’ definition of the network architecture, which may be a problem especially for real-time large-scale tasks. Therefore, this paper proposes a new model that uses a non-parametric technique for the fuzzification process. The proposed model uses an autonomous data density approach in a pruned fuzzy neural network, wich favours the compactness of the model. The performance of the proposed approach is evaluated through the usage of databases related to the Optical Interconnection Network. Finally, binary patterns classification tests for the identification of temporal distribution (asynchronous or client–server) were performed and compared with state-of-the-art fuzzy neural-based and traditional machine learning approaches. Results demonstrated that the proposed model is an efficient tool for these challenging classification tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.