Abstract
In this paper, we report the preparation of anisotropic wetting surfaces that could control various wetting behaviors of liquids in a wide surface tension range (from water to oil), which could be employed as a platform for controlling the flow of liquids in microfluidics (MFs). The anisotropic wetting surfaces are chemistry-asymmetric "Janus" silicon cylinder arrays, which are fabricated via selecting and regulating the functional groups on the surface of each cylinder unit. Liquids (in a wide surface tension range) wet in a unidirectional manner along the direction that was modified by the group with large surface energy. Through introducing the Janus structure into a T-shaped pattern and integrating it with an identical T-shaped poly(dimethylsiloxane) microchannel, the as-prepared chips can be utilized to perform as a surface tension admeasuring apparatus or a one-way valve for liquids in a wide surface tension range, even oil. Furthermore, because of the excellent ability in controlling the flowing behavior of liquids in a wide surface tension range in an open system or a microchannel, the anisotropic wetting surfaces are potential candidates to be applied both in open MFs and conventional MFs, which would broaden the application fields of MFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.