Abstract

Inflammatory lesions, often seen in diseases such as rheumatoid arthritis, atherosclerosis and cancer, feature an acidic (i.e., low pH) microenvironment rampant with cytokines, such as CSF1. For potential therapeutic intervention targeted at these CSF1 sources, we have assembled a system of four proteins inside a cell (i.e., HEK293) that initially had no natural CSF1-seeking ability. This system included a newly engineered CSF1 chimera receptor (named CSF1Rchi), the previously engineered Ca2+ activated RhoA (i.e., CaRQ), vesicular stomatitis virus glycoprotein G (VSVG) and thymidine kinase (TK). The binding of CSF1 to the CSF1Rchi generated a Ca2+ signal that activated CaRQ-mediated cellular blebbing, allowing autonomous cell migration toward the CSF1 source. Next, the VSVG protein allowed these engineered cells to fuse with the CSF1 source cells, upon low pH induction. Finally, these cells underwent death postganciclovir treatment, via the TK suicide mechanism. Hence, this protein system could potentially serve as the basis of engineering a cell to target inflammatory lesions in diseases featuring a microenvironment with high levels of CSF1 and low pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.