Abstract
In this paper, a novel approach for autonomously catching fast flying objects is presented, as inspired by the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020. In this competition, an autonomous Unmanned Aerial Vehicle (UAV) was used to intercept a ball carried by a fast flying drone. The presented solution utilizes a 3D LiDAR sensor for quick and robust target detection. The trajectory of the target is estimated and predicted to select a suitable interception position. The interceptor UAV is navigated into the interception position to safely approach the target. The interception position is frequently being adjusted based on the updated estimation and prediction of the target’s motion to ensure that the ball is caught in the dedicated onboard net. After a successful interception is detected, the UAV lands in a designated landing area. The proposed concept was intensively tested and refined in demanding outdoor conditions with strong winds and varying perception conditions to achieve the robustness required by both the demanding application and the competition. In the MBZIRC 2020 competition, our solution scored second place in Challenge 1 and first place in a combined Grand Challenge. This manuscript will provide a detailed description of the applied methods and an evaluation of our approach with data collected from real-world experiments. In addition, we present achievements of our R&D towards the transition from the MBZIRC competition to an autonomous drone interceptor, which was the main motivation of this challenge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.