Abstract

Recent evidence has suggested that Srv2/CAP (cyclase-associated protein) has two distinct functional roles in regulating actin turnover, with its N-terminus enhancing cofilin-mediated severing of actin filaments and its C-terminus catalyzing actin monomer recycling. However, it has remained unclear to what degree these two activities are coordinated by being linked in one molecule, or whether they can function autonomously. To address this, we physically divided the protein into two separate halves, N-Srv2 and C-Srv2, and asked whether they are able to function in trans both in living cells and in reconstituted assays for F-actin turnover and actin-based motility. Remarkably, in F-actin turnover assays the stimulatory effects of N-Srv2 and C-Srv2 functioning in trans were quantitatively similar to those of intact full-length Srv2. Further, in bead motility assays and in vivo, the fragments again functioned in trans, although not with the full effectiveness of intact Srv2. From these data, we conclude that the functions of the two halves of Srv2/CAP are largely autonomous, although their linkage improves coordination of the two functions in specific settings, possibly explaining why the linkage is conserved across distant plant, animal, and fungal species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.