Abstract

The obstacle avoidance problem of unmanned aerial vehicle (UAV) mainly refers to the design of a method that can safely reach the target point from the starting point in an unknown flight environment. In this paper, we mainly propose an obstacle avoidance method composed of three modules: environment perception, algorithm obstacle avoidance and motion control. Our method realizes the function of reasonable and safe obstacle avoidance of UAV in low-altitude complex environments. Firstly, we use the light detection and ranging (LiDAR) sensor to perceive obstacles around the environment. Next, the sensor data is processed by the vector field histogram (VFH) algorithm to output the desired speed of drone flight. Finally, the expected speed value is sent to the quadrotor flight control and realizes autonomous obstacle avoidance flight of the drone. We verify the effectiveness and feasibility of the proposed method in 3D simulation environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call