Abstract

Embedded sensors and smart devices have turned the environments around us into smart spaces that could automatically evolve, depending on the needs of users, and adapt to the new conditions. While smart spaces are beneficial and desired in many aspects, they could be compromised and expose privacy, security, or render the whole environment a hostile space in which regular tasks cannot be accomplished anymore. In fact, ensuring the security of smart spaces is a very challenging task due to the heterogeneity of devices, vast attack surface, and device resource limitations. The key objective of this study is to minimize the manual work in enforcing the security of smart spaces by leveraging the autonomic computing paradigm in the management of IoT environments. More specifically, we strive to build an autonomic manager that can monitor the smart space continuously, analyze the context, plan and execute countermeasures to maintain the desired level of security, and reduce liability and risks of security breaches. We follow the microservice architecture pattern and propose a generic ontology named Secure Smart Space Ontology (SSSO) for describing dynamic contextual information in security-enhanced smart spaces. Based on SSSO, we build an autonomic security manager with four layers that continuously monitors the managed spaces, analyzes contextual information and events, and automatically plans and implements adaptive security policies. As the evaluation, focusing on a current BlackBerry customer problem, we deployed the proposed autonomic security manager to maintain the security of a smart conference room with 32 devices and 66 services. The high performance of the proposed solution was also evaluated on a large-scale deployment with over 1.8 million triples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.