Abstract

Atrial fibrosis and autonomic remodelling are proposed pathophysiological mechanisms in atrial fibrillation (AF). Their impact on conduction velocity (CV) dynamics and wavefront propagation was evaluated. Local activation times (LATs), voltage, and geometry data were obtained from patients undergoing ablation for persistent AF. LATs were obtained at three pacing intervals (PIs) in sinus rhythm (SR). LATs were used to determine CV dynamics and their relationship to local voltage amplitude. The impact of autonomic modulation- pharmacologically and with ganglionated plexi (GP) stimulation, on CV dynamics, wavefront propagation, and pivot points (change in wavefront propagation of ≥90°) was determined in SR. Fifty-four patients were included. Voltage impacted CV dynamics whereby at non-low voltage zones (LVZs) (≥0.5 mV) the CV restitution curves are steeper [0.03 ± 0.03 m/s ΔCV PI 600-400 ms (PI1), 0.54 ± 0.09 m/s ΔCV PI 400-250 ms (PI2)], broader at LVZ (0.2-0.49 mV) (0.17 ± 0.09 m/s ΔCV PI1, 0.25 ± 0.11 m/s ΔCV PI2), and flat at very LVZ (<0.2 mV) (0.03 ± 0.01 m/s ΔCV PI1, 0.04 ± 0.02 m/s ΔCV PI2). Atropine did not change CV dynamics, while isoprenaline and GP stimulation resulted in greater CV slowing with rate. Isoprenaline (2.7 ± 1.1 increase/patient) and GP stimulation (2.8 ± 1.3 increase/patient) promoted CV heterogeneity, i.e. rate-dependent CV (RDCV) slowing sites. Most pivot points co-located to RDCV slowing sites (80.2%). Isoprenaline (1.3 ± 1.1 pivot increase/patient) and GP stimulation (1.5 ± 1.1 increase/patient) also enhanced the number of pivot points identified. Atrial CV dynamics is affected by fibrosis burden and influenced by autonomic modulation which enhances CV heterogeneity and distribution of pivot points. This study provides further insight into the impact of autonomic remodelling in AF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.