Abstract

Autonomic nervous system (ANS) involvement in the mediation of the synchronization between beat-to-beat RR interval variability (RRIV) and systolic blood pressure variability (SBPV) signals of the lizard Gallotia galloti (Oudart, 1839) was investigated through linear and nonlinear time series analysis methods in a pharmacological blockade context. The ANS blockers used were atropine, prazosin, and propranolol. The interdependence between the signals was quantified by means of the magnitude-squared coherence (MSC), which measures amplitude and phase linear synchronization; the phase lag index (PLI), which evaluates the phase synchronization; and the index L, which quantifies the generalized linear and nonlinear synchronization. Atropine decreased the PLI in the low-frequency (LF: 0.01–0.05 Hz) range; prazosin decreased the MSC in the medium-frequency (MF: 0.06–0.15 Hz) range; and propranolol did not alter any of the interdependence measures. It is suggested that (i) the cholinoceptor activity mediates the phase cardiovascular synchronization in the LF range; (ii) the α1-adrenoceptor activity mediates the amplitude and phase linear cardiovascular synchronization in the MF range; and (iii) the β-adrenoceptor activity plays no role in mediating any dynamics of cardiovascular synchronization in the studied frequency range. When comparing these results with those in mammals, a lesser overall autonomic involvement in the mediation of the studied cardiovascular interdependences is seen in reptiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.