Abstract

Quantum key distribution (QKD) provides future-proof security for data communications over optical networks. Currently, sophisticated QKD systems are developed and the scale of QKD-secured optical networks (QKD-ONs) becomes larger. Given the complex network conditions and dynamic end-to-end security services in QKD-ONs, autonomic management and control becomes a promising paradigm to support end-to-end quality-of-service (QoS) assurance in an efficient and stable way without requiring human intervention. Hence, to enable and utilize the autonomic functionalities over QKD-ONs for realizing the end-to-end QoS assurance becomes a challenge. This work enhances the software defined networking (SDN) technique to tackle this challenge because SDN can add programmability and flexibility for QKD-ON’s management and control. A new architecture of SDN-based QKD-ONs supporting autonomic end-to-end QoS assurance is designed, where a knowledge engine with autonomic control loops is developed in the SDN controller. We present the autonomic end-to-end QoS assurance procedure, and the cross-layer collaborative QoS assurance (CLC-QA) strategy for implementing the autonomic functionalities in the network level over QKD-ONs. We also establish an experimental testbed of SDN-based QKD-ONs supporting autonomic end-to-end QoS assurance, and perform the numerical simulation to verify our proposed approaches. Experimental results demonstrate that our presented approaches can achieve the millisecond-level overall latency of 337 ms and 618 ms, during the first and second autonomic adjustment without human intervention in case of the autonomic QoS protection. Moreover, the CLC-QA strategy is evaluated under different traffic loads by being compared with the baseline strategy without cross-layer collaboration. It can improve 22.5% protection success ratio and save 5.7% average key consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call