Abstract

An increase in body temperature in the bearded dragon, Pogona vitticeps, is accompanied by an increase in the amount of pulmonary surfactant, a mixture of proteins and lipids, with the latter consisting predominantly of phospholipid and cholesterol. This increase may result from a temperature-induced change in autonomic input to the lungs, as perfusing the isolated lungs of P. vitticeps with either acetylcholine or adrenaline increases surfactant phospholipid release. However, whether acetylcholine acts via intrapulmonary sympathetic ganglia or directly on alveolar Type II cells is unknown. Moreover, the relative importance of circulating catecholamines and pulmonary sympathetic nerves on the control of the surfactant system is also obscure. Here, we describe the mechanism of the modulation of the surfactant system and the effect of this modulation on lung compliance. The role of acetylcholine was determined by perfusing isolated lungs with acetylcholine, acetylcholine and the ganglionic antagonist hexamethonium, or acetylcholine, hexamethonium, and the muscarinic antagonist atropine. Perfusing with acetylcholine significantly increased phospholipid release but did not affect cholesterol release. While histological examination of the lung revealed the presence of a large autonomic ganglion at the apex, blocking sympathetic ganglia with hexamethonium did not prevent the acetylcholine-mediated increase in phospholipid. However, the increase was inhibited by blocking muscarinic receptors with atropine, which indicates that acetylcholine acts on muscarinic receptors to stimulate phospholipid release. By increasing pulmonary smooth muscle tone, acetylcholine decreased opening pressure and increased static inflation pressures. Plasma levels of noradrenaline and adrenaline increased with increasing temperature and were accompanied by a greater surfactant content in the lungs. While surfactant content was also higher in animals that exercised, plasma levels of adrenaline, noradrenaline, and dopamine were not elevated following exercise. Hence, surfactant release in the lizard lung may increase in response to an increase in plasma catecholamine levels. Acetylcholine, and hence the parasympathetic nervous system, may act to stimulate surfactant release but does not act via pulmonary sympathetic ganglia. We conclude that promoting surfactant secretion via an increase in circulating catecholamines may be inappropriate for a cold lizard with a requirement to conserve energy. As body temperature decreases, release of surfactant via nonadrenergic mechanisms, including cholinergic stimulation, may become increasingly important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.