Abstract

Autonomic function during sleep and wakefulness has been extensively investigated, however information concerning autonomic changes during the wake to sleep transition is scarce. The objective of the present study was to non-invasively characterize autonomic function and additional physiologic changes during sleep onset in normal and abnormal sleep. The estimation of autonomic function was based on time–frequency analysis of the RR interval series, using the power components in the very-low-frequency range (0.005–0.04 Hz), low-frequency (0.04–0.15 Hz), and high-frequency range (0.15–0.5 Hz). The ratio of low to high frequency power represented the sympathovagal balance. Thirty-four subjects who underwent whole night polysomnography were divided into 3 groups according to their complaints and study results: normal subjects, apneic patients (OSAS), and subjects with various sleep disorders (VSD). The results indicated a significant increase in RR interval during sleep onset, although its variability decreased; respiratory rate did not change, yet respiration became more stable; EMG amplitude and its variability decreased with sleep onset. Very-low-frequency power started to decrease significantly 2 min before sleep onset in all groups; low-frequency power decreased and high-frequency power did not change significantly in all groups, accordingly their ratio decreased and reflected a shift towards parasympathetic predominance. Although autonomic function displayed similar behavior in all subjects, OSAS and VSD patients presented a higher sympathovagal balance reflecting enhanced sympathetic predominance in those groups compared to normal subjects, both before and after sleep onset. All parameters reached a nadir at a defined time point during the process of falling asleep. We conclude that the wake–sleep transition period represents a transitional process between two physiologically different states; this transition starts with a decrease in the very slow oscillations in heart rate that anticipates a step-change resetting of autonomic function, followed by a decrease in sympathovagal balance towards the end of the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call