Abstract

IntroductionPortable monitoring (PM) is an alternative to laboratory polysomnography (PSG) for diagnosing obstructive sleep apnea (OSA). However, PM tends to underestimate the apnea-hypopnea index (AHI), as it does not identify non-desaturating events associated with electroencephalographic (EEG) arousal. The objectives were to explore heart rate acceleration (HRa) and decrease in pulse transit time (PTT) as surrogates to EEG arousal for non-desaturating hypopnea and respiratory effort-related arousal (RERA), and to estimate cut-off values for their use with both total sleep time (TST), the standard method for PSG, and total recording time (TRT), the usual method for PM.MethodsTwenty-four consecutive individuals with suspected OSA were studied with PSG. Calculated outcomes were: AHI, respiratory disturbance index with EEG arousal (RDIe) and autonomic arousal by HRa (RDI-HRa) and PTT decreases (RDI-PTT) at different time cut-offs. Using RDIe as reference, Bland Altman and intraclass coefficient of correlation (ICC) were used to calculate agreement between indexes, and receiver operating curves (ROC) for sensitivity/specificity of the different cut-offs.ResultsAutonomic arousals, limited to respiratory events, were present in 36% of non-desaturating hypopneas and 29% of RERAs. Using TST, RDI-HRa of 10 bpm (ICC= 0.89) and RDI-PTT with a decrease of −15 msec (ICC=0.90) agreed better with RDIe. With TRT, the RDI-HRa of 5 bpm agreed better with the RDIe (ICC=0.89). Bland–Altman plots showed mean differences of 1.53 between RDI-HRa10-TST and RDIe and 0.89 between RDI-HRa5-TRT and RDIe.ConclusionAutonomic arousals (HRa and PTT) may be a suitable proxy of EEG arousals associated with respiratory events, using both TST and TRT. Therefore, they could potentially help to capture borderline symptomatic patients and to monitor treatment outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call