Abstract

We sought to identify the brain areas that might contribute to the increased autonomic activity seen during morphine withdrawal by mapping neuronal expression of c- fos protein (Fos) and Fos-related antigens. Rats were implanted with morphine pellets or placebo pellets over a 5 day regimen and injected on day 6 with either saline or naltrexone (100 mg/kg). After a standard PAP immunocytochemical protocol, Fos-like immunoreactivity (Fos-LIR) was observed in medullary nuclei including the NTS (nucleus of the solitary tract), caudal (CVL) and rostral ventrolateral medulla (RVL). Although some Fos-LIR was seen in these areas in control rats (either morphine-implanted, saline injected, or placebo-implanted, saline or naltrexone injected), a significantly higher number of Fos-LIR-positive cells in NTS, CVL and RVL were seen after morphine withdrawal. Large numbers of Fos-like immunoreactive cells were also seen in the A5 area, the parabrachial nuclei of the pons and the locus coeruleus. Increased Fos-LIR was also detected in the paraventricular nucleus of the hypothalamus and the amygdala of morphine withdrawn rats. The Fos-LIR was co-localized with tyrosine hydroxylase immunoreactivity in many of the cells in caudal and rostral ventrolateral medulla, A5 and locus coeruleus. These data support the conclusion that autonomic areas in brain and noradrenergic/adrenergic cells in these areas are activated during morphine withdrawal and may contribute to the autonomic symptoms of opiate withdrawal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call