Abstract

We examined whether partial clothing removal is an effective thermoregulatory behaviour to attenuate both thermoregulatory and perceptual strain in a moderate environment (23 °C, 65% RH) during and after exercise. Ten healthy males (age: 21.9 (0.9) years; height: 173.9 (6.2) cm; mass: 62.3 (8.2) kg; body surface area: 1.8 (0.1) m2; VO2max: 51.8 (13.3) mL.kg−1.min−1) wore a long sleeve polyester shirt and performed two randomized cycling trials for 40 min at 40% VO2max followed by 20 min recovery. In one trial, they were permitted to roll up their sleeves at any time they wanted (Roll) whereas in the other trial, they were instructed to remain with long sleeves (No Roll) until the end of the recovery. Thermoregulatory variables were measured continuously whilst thermal perceptions (forearm wettedness perception (WPForearm), forearm and whole-body thermal discomfort (TDForearm, TDWhole), local and whole-body thermal sensation (TSForearm, TSWhole) and whole-body wettedness perception (WPwhole)) were measured every 10 min. All subjects behaved by rolling up their sleeves at 21.6 (4.7) minutes. Tskin (32.3 (0.2) °C, vs 32.0 (0.1) °C, p = 0.03), local sweat rate on the forearm (0.24 (0.08) mg.cm−2.min−1 vs 0.2 (0.04) mg.cm−2.min−1, p = 0.05), WPForearm, TDForearm, TSForearm and WPWhole were all lower in Roll than No Roll (all p < 0.05) whilst Tcore and cutaneous vascular conductance (CVC) on the forearm were not different (all p > 0.7) throughout the entire trial. We conclude that this behavioural response is an effective thermoregulatory behaviour to modulate local sudomotor function and thermal perceptions, WPWhole during exercise but only Tsk, TDForearm WPForearm and WPWhole persisted throughout the recovery in a moderate environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call