Abstract

Long QT-Syndrome (LQTS) patients are at risk of arrhythmias and seizures. We investigated whether autonomic and cardiac repolarization measures differed based on LQTS genotypes, and in LQTS patients with vs. without arrhythmias and seizures. We used 24-h ECGs from LQTS1 (n = 87), LQTS2 (n = 50), and LQTS genotype negative patients (LQTS(-), n = 16). Patients were stratified by LQTS genotype, and arrhythmias/seizures. Heart rate variability (HRV) and QT variability index (QTVI) measures were compared between groups during specific physiological states (minimum, middle, & maximum sympathovagal balance, LF/HF). Results were further tested using logistic regression for each ECG measure, and all HRV measures in a single multivariate model. Across multiple physiological states, total autonomic (SDNN) and vagal (RMSSD, pNN50) function were lower and repolarization dynamics (QTVI) were elevated in LQTS(+), LQTS1, and LQTS2, compared to LQTS(-). Many measures remained significant in the regression models. Multivariate modeling demonstrated that SDNN, RMSSD, and pNN50 were independent markers of LQTS(+) vs. LQTS(-), and SDNN and pNN50 were markers for LQTS1 vs. LQTS(-). During sympathovagal balance (middle LF/HF), RMSSD and pNN50 distinguished LQTS1 vs. LQTS2. LQTS1 patients with arrhythmias had lower total (SDNN) and vagal (RMSSD and pNN50) autonomic function, and SDNN remained significant in the models. In contrast, ECG measures did not differ in LQTS2 patients with vs. without arrhythmias, and LQTS1 and LQTS2 with vs. without seizures. Autonomic (HRV) and cardiac repolarization (QTVI) ECG measures differ based on LQTS genotype and history of arrhythmias in LQTS1. SDNN, RMSSD, and pNN50 were each independent markers for LQTS genotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call