Abstract

Solid-state nanopore sequencing has shown impressive performances in several research scenarios but is still challenging, mainly due to the ultrafast speed of DNA translocation and significant noises embedded in raw signals. Hence, event detection, aiming to locate precisely these translocation events, is the fundamental step of data analysis. However, existing event detection methods use either a user-defined global threshold or an adaptive threshold determined by the data, assuming the baseline current to be stable over time. These disadvantages limit their applications in real-world application scenarios, especially considering that the results of different methods are often inconsistent. In this study, we develop an automated adaptive method called AutoNanopore, for fast and accurate event detection in current traces. The method consists of three consecutive steps: current trace segmentation, current amplitude outlier identification by straightforward statistical analyses, and event characterization. Then we propose ideas/metrics on how to quantitatively evaluate the performance of an event detection method, followed by comparing the performance of AutoNanopore against two state-of-the-art methods, OpenNanopore and EventPro. Finally, we examine if one method can detect the overlapping events detected by the other two, demonstrating that AutoNanopore has the highest coverage ratio. Moreover, AutoNanopore also performs well in detecting challenging events: e.g., those with significantly varying baselines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.