Abstract

Lithium-ion batteries (LIBs) are currently the most suitable energy storage device for powering electric vehicles (EVs) owing to their attractive properties including high energy efficiency, lack of memory effect, long cycle life, high energy density and high power density. These advantages allow them to be smaller and lighter than other conventional rechargeable batteries such as lead–acid batteries, nickel–cadmium batteries (Ni–Cd) and nickel–metal hydride batteries (Ni–MH). Modern EVs, however, still suffer from performance barriers (range, charging rate, lifetime, etc.) and technological barriers (high cost, safety, reliability, etc.), limiting their widespread adoption. Given these facts, this review sets the extensive market penetration of LIB-powered EVs as an ultimate objective and then discusses recent advances and challenges of electric automobiles, mainly focusing on critical element resources, present and future EV markets, and the cost and performance of LIBs. Finally, novel battery chemistries and technologies including high-energy electrode materials and all-solid-state batteries are also evaluated for their potential capabilities in next-generation long-range EVs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call