Abstract

In this paper, an engine fault detection and classification technique using vibration data in the crank angle domain is presented. These data are used in conjunction with artificial neural networks (ANNs), which are applied to detect faults in a four-stroke gasoline engine built for experimentation. A comparative study is provided between the popular backpropagation (BP) method, the Levenberg–Marquardt (LM) method, the quasi-Newton (QN) method, the extended Kalman filter (EKF), and the smooth variable structure filter (SVSF). The SVSF is a relatively new estimation strategy, based on the sliding mode concept. It has been formulated to efficiently train ANNs and is consequently referred to as the SVSF-ANN. The accuracy of the proposed method is compared with the standard accuracy of the Kalman-based filters and the popular BP algorithms in an effort to validate the SVSF-ANN performance and application to engine fault detection and classification. The customizable fault diagnostic system is able to detect known engine faults with various degrees of severity, such as defective lash adjuster, piston chirp (PC), and chain tensioner (CT) problems. The technique can be used at any dealership or assembly plant to considerably reduce warranty costs for the company and manufacturer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.