Abstract

At present proton exchange membrane (PEM) performance levels and fuel cell stack operating conditions, require a plate area specific resistance of less than 30 m ohm cm 2 and a plate thickness of less than 2 mm are required to meet the vehicular volumetric power density target (>2 kW l −1). Unfortunately, it is difficult to meet these targets, and simultaneously obtain good mechanical properties and low through-thickness hydrogen permeation rates when using polymeric plate materials. Polymers are brittle at the high conductive filler concentrations (e.g. >50 v/o graphite) required for high conductivity, and are more likely to generate high convection-driven H 2 permeation rates at a high graphite loading and at a thin plate thickness. As a result, high scrap rates are realized during plate manufacturing and stacking operations, and excessive permeation rates are anticipated in pressurized stacks. This study addresses H 2 permeation concerns associated with using thin, highly-filled composite plates, and investigates factors affecting permeation such as plate temperature, thickness, graphite loading, and aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.