Abstract
A natural interpretation of automorphisms of one-rooted trees as output automata permits the application of notions of growth and circuit structure in their study. New classes of groups are introduced corresponding to diverse growth functions and circuit structure. In the context of automorphisms of the binary tree, we discuss the structure of maximal 2-subgroups and the question of existence of free subgroups. Moreover, we construct Burnside 2-groups generated by automorphisms of the binary tree which are finite state, bounded, and acyclic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.