Abstract
Let [Formula: see text] denote the group whose Cayley graph with respect to a particular generating set is the Diestel–Leader graph [Formula: see text], as described by Bartholdi, Neuhauser and Woess. We compute both [Formula: see text] and [Formula: see text] for [Formula: see text], and apply our results to count twisted conjugacy classes in these groups when [Formula: see text]. Specifically, we show that when [Formula: see text], the groups [Formula: see text] have property [Formula: see text], that is, every automorphism has an infinite number of twisted conjugacy classes. In contrast, when [Formula: see text] the lamplighter groups [Formula: see text] have property [Formula: see text] if and only if [Formula: see text].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.