Abstract
We consider the graph whose vertex set is a conjugacy class C consisting of finite-rank self-adjoint operators on a complex Hilbert space H. The dimension of H is assumed to be not less than 3. In the case when operators from C have two eigenvalues only, we obtain the Grassmann graph formed by k-dimensional subspaces of H, where k is the smallest dimension of eigenspaces. Chow's theorem describes automorphisms of this graph for k>1. Under the assumption that operators from C have more than two eigenvalues we show that every automorphism of the graph is induced by a unitary or anti-unitary operator up to a permutation of eigenspaces with the same dimensions. In contrast to this result, Chow's theorem states that there are graph automorphisms induced by semilinear automorphisms not preserving orthogonality if C is formed by operators with precisely two eigenvalues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.