Abstract
Abstract We show that, under weak assumptions, the automorphism group of a $\textrm{CAT(0)}$ cube complex $X$ coincides with the automorphism group of Hagen’s contact graph $\mathcal{C}(X)$. The result holds, in particular, for universal covers of Salvetti complexes, where it provides an analogue of Ivanov’s theorem on curve graphs of non-sporadic surfaces. This highlights a contrast between contact graphs and Kim–Koberda extension graphs, which have much larger automorphism group. We also study contact graphs associated with Davis complexes of right-angled Coxeter groups. We show that these contact graphs are less well behaved and describe exactly when they have more automorphisms than the universal cover of the Davis complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.