Abstract
We study the automorphisms of modular curves associated to Cartan subgroups of $\mathrm{GL}_2(\mathbb Z/n\mathbb Z)$ and certain subgroups of their normalizers. We prove that if $n$ is large enough, all the automorphisms are induced by the ramified covering of the complex upper half-plane. We get new results for non-split curves of prime level $p\ge 13$: the curve $X_{\text{ns}}^+(p)$ has no non-trivial automorphisms, whereas the curve $X_{\text{ns}}(p)$ has exactly one non-trivial automorphism. Moreover, as an immediate consequence of our results we compute the automorphism group of $X_0^*(n):=X_0(n)/W$, where $W$ is the group generated by the Atkin-Lehner involutions of $X_0(n)$ and $n$ is a large enough square.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.